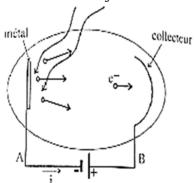


CC2 – contrôle continu de mécanique quantique KPCAIQ11

DURÉE: 1h; -Tout document et objet connecté interdit-

Données: $h = 6.62 \times 10^{-34} \text{ J.s}$; $c = 3 \times 10^8 \text{ m.s}^{-1}$; $e = 1.602 \times 10^{-19} \text{ C}$; $m_e = 9.1 \times 10^{-31} \text{ kg}$; $\alpha = 1/137$


Ouestions de cours

Rappeler puis expliciter les trois « nuages évoqués par Lord Kelvin lors de son panorama sur l'état de la physique en 1901.

Quel était la finalité de l'expérience de Davisson et Germer de 1927 ?

Exercice : effet photoélectrique

- 1. Rappeler la condition sur la longueur d'onde λ d'une radiation électromagnétique incidente à une photocathode, pour que l'effet photoélectrique se produise. On notera λ_0 la valeur au seuil pour un matériau donné.
- 2. On mesure une valeur de cette dernière à $\lambda_0 = 300$ nm dans le cas de l'aluminium. La lumière visible peut-elle produire un tel effet photoélectrique ?
- 3. Le métal constituant la cellule de la figure ci-dessous est de l'aluminium et est illuminé par une radiation de fréquence $1,2x10^{15}$ Hz. Calculer, en eV, la valeur de l'énergie cinétique maximale $E_{c,max}$ des électrons éjectés.

4. Quelle d.d.p $U = V_A - V_B$ doit-on appliquer pour annuler le courant i? Préciser les polarités à appliquer au métal ainsi qu'au collecteur, et la valeur absolue de U.

Exercice : détermination du rapport de masse du proton m_p sur celle de l'électron m_e

- 1. En 1881, le spectroscopiste Huggins a mesuré une longueur d'onde $\lambda_{H\alpha} = 656,46$ nm pour la première raie H_{α} de la série de Balmer. Calculer la fréquence d'émission $f_{H\alpha}$ de la raie H_{α} ainsi que le nombre d'onde $\sigma_{H\alpha}$ correspondant en cm⁻¹.
- 2. Donner une évaluation de la constante de Rydberg $R_{\rm H}$ en eV (1 eV = 8065,73 cm⁻¹).
- 3. L'expression de $R_{\rm H}$ vaut par ailleurs $R_{\rm H} = \frac{\alpha^2 \mu c}{2h}$, avec α la constante de structure fine, h la constante de Planck, c la célérité de la lumière dans le vide et μ la masse réduite du système électron-proton. Etablir l'expression de la constante de Rydberg R_{∞} obtenue en considérant le proton infiniment plus massif que l'électron. La calculer en eV.
- 4. Réexprimer le rapport R_{∞} / $R_{\rm H}$ pour en déduire le rapport $m_{\rm p}$ / $m_{\rm e}$ en fonction de $R_{\rm H}$ et de R_{∞} . Calculer le rapport $m_{\rm p}$ / $m_{\rm e}$ ainsi obtenu. Commenter le résultat.